En utilisant ce site, vous acceptez que les cookies soient utilisés à des fins d'analyse et de pertinence     Oui, j'accepte  Non, je souhaite en savoir plus

Coronavirus - A partir du lundi 16/03/2020, l'INSTN est fermé jusqu’à nouvel ordre Informations

Sujets de thèse
Filtrer par critères

DRF : Sujet de thèse SL-DRF-20-0289

DOMAINE DE RECHERCHE
Physique du solide, surfaces et interfaces / Physique de l’état condensé, chimie et nanosciences
INTITULÉ DU SUJET Français English

Cartographie locale de la réponse magnétique des matériaux en fréquence

RÉSUMÉ DU SUJET

Pour certains matériaux qui présentent une réponse magnétique et notamment les aciers, propriétés mécaniques et magnétiques sont corrélées via la microstructure. La mesure des propriétés magnétiques à l’échelle locale pourrait donc permettre d’accéder aux propriétés mécaniques des matériaux de façon non destructive et à une meilleure compréhension de leur microstructure. Afin d’obtenir des contrastes supplémentaires, il est possible d’utiliser la cartographie de la réponse en fréquence à l’application d’un champ magnétique alternatif (susceptibilité magnétique).

Un outil de cartographie magnétique à l’échelle locale a été développé en combinant des capteurs magnétiques magnétoresistifs et un scanner. L’utilisation de l’effet de magnétorésistance géante (GMR) permet de développer des capteurs magnétiques très sensibles, détectant des champs magnétiques de l’ordre du nT/vHz et dont la taille peut être submicronique. La spécificité du système est que trois ou quatre capteurs positionnés sur un support pyramidal scannent la surface afin de mesurer les trois composantes du champ de fuite émis par la surface des matériaux et de réaliser ainsi une cartographie 3D avec une résolution latérale de l’ordre de la dizaine de micromètre.

La thèse consistera en l’adaptation de cet imageur afin de permettre la cartographie de la susceptibilité magnétique de surface de matériaux sur une très large dynamique spectrale (de DC à 100MHz). Outre l’émission du champ AC et l’électronique de détection adaptée, des capteurs à magnétorésistance tunnel (TMR) seront développés et intégrés sur l’imageur. En effet, les capteurs TMRs possèdent une sensibilité meilleure que les GMRs d’un facteur 20 environ à haute fréquence. Les problématiques de contrôle de la distance surface – capteur et de dérives en température seront aussi adressées.

Dans un deuxième temps des échantillons de calibration seront imagés afin d’obtenir les données d’entrées pour le modèle théorique déjà développé et ainsi permettre l’évaluation par simulations des distributions du champ magnétique dans les matériaux ferromagnétiques, dans le but d’interpréter les résultats expérimentaux.

L’étude portera ensuite sur des systèmes d’intérêt particulier. Deux applications sont potentiellement visées : les aciers ferromagnétiques afin de corréler les propriétés magnétiques avec les propriétés mécaniques et avec d’autres techniques de caractérisation comme les mesures de bruit Barkhausen. Le deuxième système concerne l’évaluation de performance de l’imageur et des capteurs développés pour la détection de défauts au bord de pièces métalliques en cours de construction par fabrication additive et notamment la différentiation de zones fusionnées et non fusionnées.

FORMATION NIVEAU MASTER RECOMMANDÉ

Physique du solide, physique des matériaux, Nanophysique

INFORMATIONS PRATIQUES
Institut rayonnement et matière de Saclay
Service de Physique de l’Etat Condensé
Laboratoire Nano-Magnétisme et Oxydes
Centre : Saclay
Date souhaitée pour le début de la thèse : 01/09/2020
PERSONNE À CONTACTER PAR LE CANDIDAT

Aurélie Solignac  

CEA
DRF/IRAMIS/SPEC/LNO
CEA Saclay
91191 Gif Sur Yvette Cedex

Téléphone : +33 1 69 08 95 40

UNIVERSITÉ / ÉCOLE DOCTORALE
ENS Paris– Paris 6 Pierre-et-Marie-Curie – Diderot – Paris-Sud
Physique en Île-de-France (EDPIF)
DIRECTEUR DE THÈSE

Myriam PANNETIER-LECOEUR

CEA
DRF/IRAMIS/SPEC/LNO
CEA Saclay
91191 Gif Sur Yvette Cedex