En utilisant ce site, vous acceptez que les cookies soient utilisés à des fins d'analyse et de pertinence     Oui, j'accepte  Non, je souhaite en savoir plus
Sujets de thèse
Filtrer par critères

DRF : Sujet de thèse SL-DRF-17-0341

DOMAINE DE RECHERCHE
Astrophysique / Physique corpusculaire et cosmos
INTITULÉ DU SUJET Français English

Étude des Grains Interstellaires à l'Ère du JWST

RÉSUMÉ DU SUJET

Le milieu interstellaire, qui remplit le volume entre les étoiles d’une galaxie, est constitué de deux composantes principales : le gaz et la poussière. Les grains de poussière sont de petites particules solides, principalement constituées de composés silicatés et carbonés. Ils jouent un rôle majeur dans la physique du milieu interstellaire, bien que leur masse n’en représente qu’un pourcent. En effet, ils absorbent, puis réémettent en infrarouge, une fraction importante de la puissance rayonnée par les étoiles et les disques d’accrétion. En particulier, les régions de formation d’étoiles sont totalement opaques en lumière visible. Seul le rayonnement infrarouge, émis à 99% par la poussière, permet de les étudier. Les grains sont également à l’origine du chauffage du gaz, par effet photo-électrique, dans les régions de photodissociation (PDR). Enfin, les grains servent de catalyseurs à de nombreuses réactions chimiques, dont la formation du dihydrogène, molécule la plus abondante de l’univers.

Les propriétés de ces grains de poussière (abondance, composition chimique, distribution de taille, etc.), ainsi que leur évolution, sont cependant encore mal connues. C’est la conséquence directe de la grande complexité de cette composante et de la difficulté de disposer d’observations permettant de discriminer différents modèles. Ces incertitudes soumettent à caution de nombreux pans de notre connaissance de l’astrophysique : mesures de masse, dérougissement des observations (c’est à dire la correction de l’extinction le long de la ligne de visée), modèles détaillés de PDR, etc. Raffiner notre compréhension de la poussière est également crucial pour comprendre le cycle de la matière interstellaire, car les grains ont un rôle régulateur dans plusieurs des processus qui gouvernent ce cycle. Une compréhension fine de la physique des grains est donc nécessaire pour comprendre l’évolution des galaxies.

L'une des approches, pour s'attaquer à ces questions ouvertes, consiste à étudier la manière dont varient les propriétés observées des grains, avec les conditions physiques auxquelles ils sont soumis. De telles relations empiriques, si elles sont assez précises, permettent de lever de nombreuses dégénérescences sur les différents modèles. La thèse que nous proposons a pour but de se concentrer sur l’étude détaillée des propriétés des plus petits grains (avec un rayon inférieur à 10 nm) et des hydrocarbures aromatiques polycycliques (PAH). Ces composantes du milieu interstellaire rayonnent hors équilibre dans l'infrarouge moyen (5-40 microns). C’est le domaine de longueur d’onde qui contient le plus grand nombre de bandes de résonance de ces solides.

Cette étude se concentrera sur plusieurs galaxies proches, dont les nuages de Magellan. L'intérêt d'étudier les galaxies proches plutôt que le milieu interstellaire de notre Galaxie réside dans la diversité des conditions physiques environnementales auxquelles l'on peut accéder (métallicité, intensité du champ de rayonnement stellaire, etc.).

De nombreuses études ont déjà été publiées sur ce sujet, notamment avec le télescope spatial Spitzer. Cependant, la plupart se sont avérées superficielles. Il reste de nombreux aspects à étudier : (i) la corrélation des propriétés des principales bandes aromatiques avec les conditions physiques ; (ii) contraindre l’évolution de leur distribution de taille ; (iii) identifier et modéliser plusieurs bandes de solides dans les régions de formation d'étoiles. L’une des originalités de cette thèse consistera à développer une méthode sophistiquée de modélisation des données. En effet, les études précédentes se sont presque toutes contentées d’analyser les spectres observés à partir de décompositions linéaires simples. Nous proposons à l’étudiant intéressé de s’atteler au développement d’un code bayesien hiérarchique de décomposition des spectres infrarouges, dont les composantes spectrales proviendront directement de bases de données atomiques, moléculaires et de physique du solide. Ce type de modèle permet d’effectuer simultanément une modélisation physique de l’échantillon et une modélisation statistique de la distribution des paramètres. Il permet de lever de nombreuses dégénérescences et permet d’extraire le maximum d’information des données, en prenant en compte les différentes incertitudes, sans toutefois sur-interpréter les observations. Nous avons récemment développé un tel modèle pour la modélisation des distributions spectrales d’énergie, et les résultats sont convaincants. Ce nouvel outil et son application méticuleuse aux données sont la garantie d'une interprétation précise et originale des processus physiques à l'oeuvre dans les régions étudiées.

Le James Webb Space Telescope (JWST), qui sera lancé en octobre 2018, observera le domaine infrarouge moyen avec une sensiblité et une résolution spatiale exceptionnelles. Les méthodes développées pendant la thèse pourront être appliquées à ces nouvelles données.

FORMATION NIVEAU MASTER RECOMMANDÉ

Formation de base en physique (niveau M2) et notion de programmation

INFORMATIONS PRATIQUES
Institut de recherche sur les lois fondamentales de l'univers
Service d'Astrophysique
Laboratoire d’études de la formation des étoiles et du milieu interstellaire
Centre : Saclay
Date souhaitée pour le début de la thèse : 01/10/2017
PERSONNE À CONTACTER PAR LE CANDIDAT

Frédéric Galliano  

CNRS
DSM/IRFU/SAp/LCEG
CEA/Saclay/SAp
Orme des Merisiers
Batiment 709
Gif-sur-Yvette
91191

Téléphone : +33 1 69 08 18 21

UNIVERSITÉ / ÉCOLE DOCTORALE
Paris Sud
Astronomie et Astrophysique d'Île de France
DIRECTEUR DE THÈSE

Suzanne MADDEN

CEA
DRF/IRFU/SAp/LFEMI
CEA/Saclay/SAp
Orme des Merisiers
Batiment 709
Gif-sur-Yvette
91191