En utilisant ce site, vous acceptez que les cookies soient utilisés à des fins d'analyse et de pertinence     Oui, j'accepte  Non, je souhaite en savoir plus
Sujets de thèse
Filtrer par critères

DRF : Sujet de thèse SL-DRF-18-0255

INTITULÉ DU SUJET Français English

JWST: from data analysis software and techniques to the quest for hidden mergers in high redshift galaxies

RÉSUMÉ DU SUJET

JWST will be launched early in 2019, with an important participation from ESA and CNES. JWST capabilities are revolutionary, compared to the existing state of the art, in terms of resolution and sensitivity over the 1-30um wavelength range, where stars and (warm) dust emit their light from galaxies at high redshift. For the first time JWST will provide spatially resolved photometry up to the mid-IR (at least 10um, with NIRCAM and MIRI) with sub-arcsec resolution. The competitive exploitation of the data for scientific endeavors will require the mastering of the data, deeply understanding the reduction, treatment and developing tools to foster the analysis. I propose a PhD thesis in Saclay as a collaborative effort between experts from the local 'MICE, the Centre of Expertise for MIRI' and with researchers in galaxy formation and evolution. The student will be responsible for developing new high level software for the analysis of resolved imaging data from MIRI and NIRCAM, modeling and understand the resolution, pixelization and PSF convolution effects. This will include high level software to create spatially resolved maps of physical parameters (stellar mass, dust attenuation, stellar age, star formation rate) and pixel by pixel spectral energy distributions. The student will work on testing and improving the existing MIRI simulator, adapting it to the case of resolved observations of distant galaxies. The results of the efforts will be shared with the French community in the spirit of fostering its expertise and efficiency in the early use of the ground breaking JWST data. This work will be based on public data from the ERS efforts on deep cosmological fields, some of which include myself as a coauthor (these are Early Release Science proposals, approved ones will be known early 2018, all data will be immediately public).

The student will ultimately use the data to search for ongoing hidden merger events and AGN components inside galaxies. These are lower luminosities and therefore much more frequent events, that affect only a nuclear part of the galaxy, while the rest behaves as a normal disk, similar to M82 which could be a local proto-type of this situation. This research is based on recent discoveries from our team at the peak of galaxy formation z=1-4, including ALMA high resolution observations of distant star forming galaxies showing compact dust embedded cores (Cibinel, Daddi, Bournaud et al 2017), near-IR rest frame line spectroscopy of distant starbursts showing optically thick cores with growing AGNs (Calabro, Daddi et al in preparation), and other ongoing works. Ultimately this research will lead to the first realistic estimate of the impact of mergers on star formation in the distant Universe, a widely discussed topic. Also, we could shed new lights on the issues of black hole growth duty cycle and the role of feedback in terminating star formation at high redshifts.

FORMATION NIVEAU MASTER RECOMMANDÉ

Master Astrophysique

INFORMATIONS PRATIQUES
Institut de recherche sur les lois fondamentales de l'univers
Service d'Astrophysique
Laboratoire de Cosmologie et d'Evolution des Galaxies
Centre : Saclay
Date souhaitée pour le début de la thèse : 01/10/2018
PERSONNE À CONTACTER PAR LE CANDIDAT

Emanuele DADDI  

CEA
DRF/IRFU/SAp
Orme des Merisiers

UNIVERSITÉ / ÉCOLE DOCTORALE
Paris-Diderot (Paris 7)
Astronomie et Astrophysique d'Île de France
DIRECTEUR DE THÈSE

Emanuele DADDI

CEA
DRF/IRFU/SAp
Orme des Merisiers